Monday, 14 October 2013

Unit 1 - Scientific Notation



Scientific notation is a way of writing numbers that are too big or too small to be 

conveniently written in decimal form.


Check the following webpage:



There are interesting examples and it is very well explained.


Big distances:

Did you know that the closest star is Alfa Centauri.


It is approximately 40 113 000 000 000 km far away.

Can you express this distance using scientific notation?


Small distances:

Did you know that the spermatozoon is the smallest cell in 

human body?


It is 0,000 055 m long.

Can you express this length using 

scientific notation?



Wednesday, 9 October 2013

PRACTICE 1: MEASURING IN THE LAB 


You can download the guide clicking here.


1.  Objectives.
- To learn how to measure length, surface, volume, mass and density.
- To learn how to convert different units of measure.
2.  Equipment.
ü  Tape measure üClassic scale üElectronic scale   üGraduated cylinder üThree different matters (and one thread to tie).            
3.  Procedure.
Form 6 groups. Each group will have:
- One logistic manager (he or she brings and leaves the equipment).
- Two record managers (he or she takes note of the records).
- One safety manager (responsible of safety and apply the rules)
- Two closing managers (they will be in charge of keeping the lab tidy and clean).
a.    Draw a sketch of the classroom, in 2 dimensions and 3 dimensions.
b.    Measure the classroom and use the sketch to take note of the measures. Do not forget to measure the height of room (ask the teacher how to do it).
c.    Measure the mass of each of the three objects, using the classic scale. Take note of the results (if you weigh a liquid, subtract the mass of the container).
d.    Measure the mass of each of the three objects, using the electronic scale. Take note of the results.
e.    Measure the volume of the three objects, using the graduated cylinder. Tie the objects for not breaking the glass. Take note of the millilitres of each matter.

4.  Results:
LENGTH
-      What is the length of wall which has the windows?

-      What is the lenght of the wall which has the whiteboard?

Express those measures in meters, millimetres, and kilometres.


SURFACE
(Remeber that the area of a rectangle is A=a·b)

-      What is the surface of the classroom?

Express this surface in square meters, square millimetres and square kilometres.

 


VOLUME (Remeber that the volume of a prisme is V=a·b·c)

-      What is the volume of the classroom?

Express this measure in cubic meters, litres and cubic millimetres.
MASS OF THE OBJECTS

-      What is the mass of objects 1, 2 and 3 using the classic scale?

-      What is the mass of the objects 1, 2 and 3 using the electronic scale?

Express this mass in grams, kilograms and tonnes.

-      Which measure is more accurate?

VOLUME OF THE OBJECTS

-      What is the volume of objects 1, 2 and 3?

Express this volume in millilitres, litres, cubic metres and cubic centimetres.


DENSITY OF THE OBJECTS

 Remember that 


-      With the mass and the volume, complete the following table:
Object
Mass (g)
Volume (cm3)
Density (g/cm3)
Object 1




Object 2




Object 3






Looking to the different substances table, which type of substance do you think we have?

Tuesday, 8 October 2013

LAB SAFETY 

First of all, the laboratory is a dangerous place, so we have to respect the safety rules (in spanish):

1. En el laboratorio no se corre. Trabaja en tu puesto de trabajo y las prendas de ropa no se dejan encima de las mesas, se cuelgan en las perchas. Lleva al laboratorio solamente el cuaderno de prácticas, bolígrafo y calculadora si hace falta.
2. Lleva el pelo recogido. Utiliza guantes y gafas de seguridad cuando te lo diga el profesor.
3. Lee el guión atentamente, y antes de comenzar comprueba que tienes todo lo que te hace falta, no toques nada que no corresponda a tu práctica. Cuando comprendas lo que hay que hacer empieza a trabajar, no antes. En caso de duda pregunta al profesor.
4. Solicita el material que te falte al profesor. No lo busques por tu cuenta. Ten muy presente los símbolos y advertencias que aparecen en los frascos de reactivos químicos.

5. Cuidado con los aparatos eléctricos. Ten las manos limpias y secas. No manipules aparatos eléctricos con las manos mojadas.
6. Cuidado con los líquidos, no los derrames. Evita respirar gases desconocidos (el profesor te indicará como se huelen las sustancias) y no pruebes ninguna sustancia. Los reactivos no utilizados no los devuelvas al frasco, contaminarías todo el contenido. Coge cantidades pequeñas, solo lo que te haga falta.
7. Cuando calientes un tubo de ensayo hazlo por la parte superior del líquido, nunca por el fondo para evitar proyecciones y no orientes la boca del tubo hacia ninguna persona.
8. Los aparatos calientes se deben manipular con pinzas. Cuidado con las sustancias inflamables (lo indica en el frasco). Asegúrate de que no hay un mechero encendido cerca. En caso de heridas o quemaduras avisa inmediatamente al profesor.
9. Al finalizar limpia y ordena todo el material. Deja los aparatos desconectados. Cierra las llaves del agua y apaga los mecheros.

10. Lava tus manos antes de salir del laboratorio.


If you understand and respect the rules, we will work the whole year in the lab: It is funnier!!!

Looking to the following picture, what are they doing wrong? (Please comments):





Monday, 7 October 2013

Unit 1 - THE MATTER

Hello scientists!

In this UNIT 1, we'll study the matter, its properties, how we measure things, kind of substances, and a lot of interesting things.

Remember, everything in the Universe is MATTER or ENERGY. 

1. The properties of the matter.

How do we recognise the matter?

Matter has three properties:

- Matter occupies space, it has VOLUME.
- Matter attracts matter, it has GRAVITY.
- Matter tends to move if it is in motion or to keep stopped if it is still, it has INERTIA.

The MASS is the amount of matter. 

               More mass -> More gravity and more inertia.   
               Less mass - > Less gravity and less inertia.

The WEIGHT is the effect of gravity.


Gravity causes Weight

gravity
An objects weight is how hard gravity is pulling on it.
We think the weight is the same everywhere ... because we all live on the surface of the planet Earth!
But in orbit it would not push on the scales at all.
The scales would show 0 kg ... but the mass is still 100 kg !
freefall weight is zero
An object's mass doesn't change (unless you remove some!), but its weight can change.

So Why Do People Say Weight instead of Mass?

People often use "weight" to mean "mass", and vice versa.
Because gravity is pretty much the same everywhere on Earth, we don't notice a difference.
But remember .. they do not mean the same thing,
and they can have different measurements.
Here are some conditions where the Weight might change:
  • in space (can be weightless!)
  • on the moon (a 100 kg mass would weigh 16.6 kg)
  • you can even get very slight differences in weight in different locations on earth!

2. The measure.

When we measure, we compare a property of the matter, called MAGNITUDE, with a known and universal unit.


We can measure differents magnitudes, using different units. 

In the past, each country had its own units. Luckyly, all scientist agreed to have the same units, and they created the International System of Units (abbreviated SI from French: Le système international d'unités).



British and USA people use the Imperial System of Units:
British Units

HOW CAN WE CONVERT UNITS?

Remember the multiples and submultiples:

  • Kilo... k-
  • Hecta...h-
  • Deca...da-
  • -----  ----
  • deci...d-
  • centi...c-
  • mili....m-

LENGTH: The S.I. Unit is the metre. 

Example:   754,56 cm -> hm

We go up (divide) 4 steps, so we move left the comma 4 places:

754,56 cm = 0,075 456 hm


SURFACEThe S.I. Unit is the square metre. 


Example:   125,75 dam2  -> dm2

We go down (multiply) 2 steps, each step multiply 100, so we move right the comma 4 places:

125,75 dam2  = 1 257 500 dm2

VOLUME: The S.I. Unit is the cubic metre. 


Example 1: 250 000 mm3 -> m3

We go up (divide) 3 steps, each step multiply 1000, so we move left the comma 9 places:

250 000 mm3 = 0,000 250 m3

Example 2: 5,25 litres -> cm3

One litre is equal to one dm3, so we go down (multiply) 1 step, each step multiply 1000, so we move right the comma 3 places:

5,25 litres = 5,25 dm3 = 5 250 cm3


MASS: The S.I. Unit is the kilogram.  We also use the metric TON (T), 1 Ton = 1000 kg.

Example: 4 250 mg -> g 

We go up (divide) 3 steps, so we move left the comma 3 places:

4 250 mg = 4,25 g

DENSITY:
The density of a substance is its mass divided its volume:

The S.I. is kilogram / cubic metre (kg/m3). 

In the following tables you can check the density of different substances, in g/cm3.


LET'S PRACTICE!

1) You can practice unit conversions, completing the following sheet (it is corrected during the class):
- Click here to download the sheet. 

2) Practical exercises: 

3) CAMP NOU OR SANTIAGO BERNABEU?

Camp nou field dimensions

Santiago Bernabeu field dimensions

Complete on your notebook:
Camp Nou
Long:__________ .     Wide: __________ . Surface: ___________

Santiago Bernabeu
Long:__________ .     Wide: __________ . Surface: ___________

Which field has more surface?